Combined transcript and metabolite profiling of Arabidopsis leaves reveals fundamental effects of the thiol-disulfide status on plant metabolism.
نویسندگان
چکیده
In this study, we used gas chromatography-mass spectrometry analysis in combination with flux analysis and the Affymetrix ATH1 GeneChip to survey the metabolome and transcriptome of Arabidopsis (Arabidopsis thaliana) leaves in response to manipulation of the thiol-disulfide status. Feeding low concentrations of the sulfhydryl reagent dithiothreitol for 1 h at the end of the dark period led to posttranslational redox activation of ADP-glucose pyrophosphorylase and major alterations in leaf carbon partitioning, including an increased flux into major respiratory pathways, starch, cell wall, and amino acid synthesis, and a reduced flux to sucrose. This was accompanied by a decrease in the levels of hexose phosphates, while metabolites in the second half of the tricarboxylic acid cycle and various amino acids increased, indicating a stimulation of anaplerotic fluxes reliant on alpha-ketoglutarate. There was also an increase in shikimate as a precursor of secondary plant products and marked changes in the levels of the minor sugars involved in ascorbate synthesis and cell wall metabolism. Transcript profiling revealed a relatively small number of changes in the levels of transcripts coding for components of redox regulation, transport processes, and cell wall, protein, and amino acid metabolism, while there were no major alterations in transcript levels coding for enzymes involved in central metabolic pathways. These results provide a global picture of the effect of redox and reveal the utility of transcript and metabolite profiling as systemic strategies to uncover the occurrence of redox modulation in vivo.
منابع مشابه
An integrated genomics approach to define niche establishment by Rhodococcus fascians.
Rhodococcus fascians is a Gram-positive phytopathogen that induces shooty hyperplasia on its hosts through the secretion of cytokinins. Global transcriptomics using microarrays combined with profiling of primary metabolites on infected Arabidopsis (Arabidopsis thaliana) plants revealed that this actinomycete modulated pathways to convert its host into a niche. The transcript data demonstrated t...
متن کاملMetabolic profiling reveals local and systemic responses of host plants to nematode parasitism
The plant parasitic beet cyst nematode Heterodera schachtii induces syncytial feeding structures in Arabidopsis roots. The feeding structures form strong sink tissues that have been suggested to be metabolically highly active. In the present study, metabolic profiling and gene targeted expression analyses were performed in order to study the local and systemic effects of nematode infection on t...
متن کاملBiochemical Networks and Epistasis Shape the Plant Metabolome
Genomic approaches have accelerated the study of quantitative genetics underlying phenotypic variation. These approaches associate genome-scale analyses such as transcript profiling with targeted phenotypes such as measurements of specific metabolites. Additionally, these approaches have potential utility in identifying uncharacterized networks/pathways. However, little is known about the compl...
متن کاملCombined transcript and metabolite profiling of Arabidopsis grown under widely variant growth conditions facilitates the identification of novel metabolite-mediated regulation of gene expression.
Regulation of metabolism at the level of transcription and its corollary metabolite-mediated regulation of transcription are well-documented mechanisms by which plants adapt to circumstance. That said the function of only a minority of transcription factor networks are fully understood and it seems likely that we have only identified a subset of the metabolites that play a mediator function in ...
متن کاملMetabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.
The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 141 2 شماره
صفحات -
تاریخ انتشار 2006